

Problem 1

The hoisting arrangement for lifting a large pipe is shown in Figure Q1. The spreader is a steel tubular section with outer diameter 70 mm and inner diameter 57 mm . Its length is 2.6 m and its modulus of elasticity is 200 GPa. Evaluate the maximum weight of the pipe that can be lifted, considering a safety factor of 2.25 with respect to Euler buckling. Assume pinned conditions at the ends of the spreader.
Hint: in the current arrangement, the spreader is under compression.

Figure Q1

Solution

$E=200 \mathrm{GPa} \quad d_{2}=70 \mathrm{~mm}$
$d_{1}=57 \mathrm{~mm} \quad L=2.6 \mathrm{~m}$
$n=2.25 \quad \alpha=\arctan \left(\frac{7}{10}\right)$
$I=\frac{\pi}{64}\left(d_{2}{ }^{4}-d_{1}{ }^{4}\right) \quad I=660.4 \times 10^{3} \mathrm{~mm}^{4}$
$P_{\text {cr }}=\frac{\pi^{2} E I}{L^{2}} \quad P_{\text {cr }}=199 \mathrm{kN}$
Allowable Load
$P_{\text {allow }}=\frac{P_{\text {cr }}}{n} \quad P_{\text {allow }}=88.6 \mathrm{kN}$
Equilibrium of joint A
$\Sigma F_{\text {horiz }}=0 \quad-P+T \cos (\alpha)=0$
$\Sigma F_{\text {vert }}=0 \quad T \sin (\alpha)-\frac{W}{2}=0$
Solve the equation
$W=2 P \tan (\alpha)$
Maximum weight of pipe
$W_{\max }=2 P_{\text {allow }} \tan (\alpha) \quad W_{\max }=124 \mathrm{kN}$

Problem 2

Figure Q 2 shows truss $A B C$ which supports a vertical load W at joint B. Members $A B$ and $B C$ are made of circular hollow steel pipes with outside diameter 100 mm and wall thickness of 6 mm . Joint B is restrained against displacement perpendicular to the plane of the truss. Determine the critical buckling load, W_{cr}. Take Young's Modulus, $E=200 \mathrm{GPa}$.

Solution

Provided by Dr. Wong Jing Ying
Figure Q2

$$
\begin{array}{r}
\text { From () , } \quad F_{A B}=\frac{F_{B C} \sin 35}{\sin 40}, F_{B C}=\frac{F_{A B} \sin 40}{\sin 35} \\
\Rightarrow \quad\left(\frac{F_{B C \sin 35}}{\sin 40}\right) \cos 40+F_{B C} \cos 35^{\circ}-W=0 \\
W=1.503 F_{B C} \\
\Rightarrow \quad F_{A B} \cos 40^{\circ}+\left(\frac{F_{A B} \sin 40}{\sin 35}\right) \cos 35^{\circ}-W=0 \\
W=1.684 F_{A B} \\
\therefore \quad W_{C R}^{A B}=1.684 P_{C R}^{A B}=1.684(84.06)=141.56 \mathrm{kN} \\
\quad \\
\quad W_{C R}^{B C}=1.503 P_{C R}^{B C}=1.503(96.1)=144.44 \mathrm{kN}
\end{array}
$$

www.assignmentcompletion.com

